Nuprl Lemma : geo-parallel-lsep-opp

e:EuclideanPlane. ∀a,b,c,d:Point.  (geo-parallel(e;a;b;c;d)  ab)


Proof




Definitions occuring in Statement :  geo-parallel: geo-parallel(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-parallel: geo-parallel(e;a;b;c;d) and: P ∧ Q member: t ∈ T iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True uall: [x:A]. B[x] select: L[n] cons: [a b] subtract: m guard: {T} subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  lsep-iff-all-sep geo-colinear-is-colinear-set length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf geo-sep-sym lsep-implies-sep geo-colinear_wf geo-parallel_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis because_Cache sqequalRule isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed isectElimination applyEquality instantiate independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (geo-parallel(e;a;b;c;d)  {}\mRightarrow{}  c  \#  ab)



Date html generated: 2018_05_22-PM-00_13_57
Last ObjectModification: 2017_10_12-AM-11_14_18

Theory : euclidean!plane!geometry


Home Index