Nuprl Lemma : lsep-iff-all-sep

g:EuclideanPlane. ∀a,b,c:Point.  (a bc ⇐⇒ (∀x:Point. (Colinear(x;b;c)  a ≠ x)) ∧ b ≠ c)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: rev_implies:  Q oriented-plane: OrientedPlane exists: x:A. B[x] sq_exists: x:A [B[x]] euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T basic-geometry: BasicGeometry geo-equilateral: EQΔ(a;b;c) geo-midpoint: a=m=b uiff: uiff(P;Q) cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b true: True select: L[n] cons: [a b] subtract: m or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf lsep-implies-sep geo-lsep_wf geo-sep_wf geo-point_wf lsep-colinear-sep colinear-equidistant-points-exist Euclid-midpoint sq_stable__midpoint midpoint-sep Euclid-Prop1 upper-dimension-axiom geo-congruent-iff-length geo-length-flip colinear-lsep-cycle lsep-all-sym geo-sep-sym geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma istype-false istype-le istype-less_than colinear-lsep oriented-colinear-append cons_wf nil_wf cons_member l_member_wf list_ind_cons_lemma list_ind_nil_lemma geo-sep-or colinear-lsep'
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule inhabitedIsType dependent_functionElimination independent_functionElimination productElimination because_Cache productIsType functionIsType dependent_set_memberEquality_alt setElimination rename imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination natural_numberEquality dependent_pairFormation_alt inrFormation_alt inlFormation_alt equalityIsType1 unionElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x:Point.  (Colinear(x;b;c)  {}\mRightarrow{}  a  \mneq{}  x))  \mwedge{}  b  \mneq{}  c)



Date html generated: 2019_10_16-PM-01_42_53
Last ObjectModification: 2018_11_08-PM-02_12_29

Theory : euclidean!plane!geometry


Home Index