Nuprl Lemma : out-implies-straightangle
∀e:EuclideanPlane. ∀a,b,c,a',b',c':Point.  (a' ≠ b' 
⇒ c' ≠ b' 
⇒ out(b ac) 
⇒ (abc ≅a a'b'c' 
⇐⇒ out(b' a'c')))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
geo-cong-angle: abc ≅a xyz
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
geo-out: out(p ab)
, 
geo-midpoint: a=m=b
, 
basic-geometry-: BasicGeometry-
Lemmas referenced : 
geo-cong-angle_wf, 
geo-out_wf, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-congruent-preserves-out, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-out_transitivity, 
geo-between-out, 
geo-between-sep, 
geo-out_inversion, 
geo-sep-sym, 
symmetric-point-construction, 
geo-proper-extend-exists, 
midpoint-sep, 
geo-strict-between-sep2, 
geo-out-iff-between1, 
geo-strict-between-sep3, 
geo-strict-between-implies-between, 
geo-between-symmetry, 
zero-angles-congruent2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
inhabitedIsType, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
rename
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,a',b',c':Point.
    (a'  \mneq{}  b'  {}\mRightarrow{}  c'  \mneq{}  b'  {}\mRightarrow{}  out(b  ac)  {}\mRightarrow{}  (abc  \mcong{}\msuba{}  a'b'c'  \mLeftarrow{}{}\mRightarrow{}  out(b'  a'c')))
Date html generated:
2019_10_16-PM-01_56_05
Last ObjectModification:
2019_09_27-PM-03_55_31
Theory : euclidean!plane!geometry
Home
Index