Nuprl Lemma : out-implies-straightangle

e:EuclideanPlane. ∀a,b,c,a',b',c':Point.  (a' ≠ b'  c' ≠ b'  out(b ac)  (abc ≅a a'b'c' ⇐⇒ out(b' a'c')))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry prop: rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-cong-angle: abc ≅a xyz exists: x:A. B[x] uiff: uiff(P;Q) geo-out: out(p ab) geo-midpoint: a=m=b basic-geometry-: BasicGeometry-
Lemmas referenced :  geo-cong-angle_wf geo-out_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-congruent-preserves-out geo-congruent-iff-length geo-length-flip geo-out_transitivity geo-between-out geo-between-sep geo-out_inversion geo-sep-sym symmetric-point-construction geo-proper-extend-exists midpoint-sep geo-strict-between-sep2 geo-out-iff-between1 geo-strict-between-sep3 geo-strict-between-implies-between geo-between-symmetry zero-angles-congruent2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination because_Cache inhabitedIsType productElimination dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,a',b',c':Point.
    (a'  \mneq{}  b'  {}\mRightarrow{}  c'  \mneq{}  b'  {}\mRightarrow{}  out(b  ac)  {}\mRightarrow{}  (abc  \mcong{}\msuba{}  a'b'c'  \mLeftarrow{}{}\mRightarrow{}  out(b'  a'c')))



Date html generated: 2019_10_16-PM-01_56_05
Last ObjectModification: 2019_09_27-PM-03_55_31

Theory : euclidean!plane!geometry


Home Index