Nuprl Lemma : zero-angles-congruent2

g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (out(b ac)  out(y xz)  abc ≅a xyz)


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q member: t ∈ T geo-out: out(p ab) basic-geometry: BasicGeometry exists: x:A. B[x] cand: c∧ B basic-geometry-: BasicGeometry- uall: [x:A]. B[x] uimplies: supposing a uiff: uiff(P;Q) squash: T prop: true: True subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  geo-sep-sym geo-proper-extend-exists geo-strict-between-implies-between geo-between-symmetry geo-congruent-iff-length geo-add-length-between geo-length-flip geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-comm geo-between_wf geo-congruent_wf geo-out_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-between-out geo-strict-between-sep1 geo-out_transitivity geo-out_inversion geo-out-cong-cong
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination hypothesis because_Cache sqequalRule rename dependent_pairFormation_alt isectElimination independent_isectElimination equalityTransitivity equalitySymmetry applyEquality lambdaEquality_alt imageElimination universeIsType inhabitedIsType natural_numberEquality imageMemberEquality baseClosed productIsType instantiate

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (out(b  ac)  {}\mRightarrow{}  out(y  xz)  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz)



Date html generated: 2019_10_16-PM-01_48_48
Last ObjectModification: 2019_09_05-PM-02_46_34

Theory : euclidean!plane!geometry


Home Index