Nuprl Lemma : perp-aux1

e:HeytingGeometry. ∀a,b,c,p,q,r:Point.  (a bc  a-p-b  c-q-b  a-r-c  (∃y:Point. (p-y-c ∧ q-y-r)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a prop: subtype_rel: A ⊆B uall: [x:A]. B[x] cand: c∧ B and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x] subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane heyting-geometry: HeytingGeometry exists: x:A. B[x] basic-geometry-: BasicGeometry-
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf heyting-geometry_wf subtype_rel_transitivity heyting-geometry-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-strict-between_wf geo-triangle_wf geo-triangle-symmetry geo-inner-pasch-ex geo-strict-between-sep1 lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma subtype_rel_self geo-strict-between-implies-colinear geo-colinear-is-colinear-set geo-strict-between-sep3 geo-triangle-colinear geo-strict-between-trans3 geo-strict-between-trans2 geo-strict-between-trans geo-strict-between-sym geo-left-axioms_wf basic-geo-axioms_wf geo-strict-between-sep2 geo-sep-sym
Rules used in proof :  independent_isectElimination instantiate sqequalRule applyEquality isectElimination dependent_set_memberEquality productElimination hypothesis independent_functionElimination because_Cache hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality independent_pairFormation natural_numberEquality voidEquality voidElimination isect_memberEquality dependent_pairFormation cumulativity productEquality setEquality

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,p,q,r:Point.
    (a  \#  bc  {}\mRightarrow{}  a-p-b  {}\mRightarrow{}  c-q-b  {}\mRightarrow{}  a-r-c  {}\mRightarrow{}  (\mexists{}y:Point.  (p-y-c  \mwedge{}  q-y-r)))



Date html generated: 2017_10_02-PM-07_07_36
Last ObjectModification: 2017_08_08-PM-00_38_33

Theory : euclidean!plane!geometry


Home Index