Nuprl Lemma : pgeo-LPSepOr_wf
∀g:ProjectivePlaneStructure. ∀l:Line. ∀p:{p:Point| l ≠ p} . ∀q:Point.  (LPSepOr(l;p;q) ∈ q ≠ l ∨ q ≠ p)
Proof
Definitions occuring in Statement : 
pgeo-LPSepOr: LPSepOr(l;p;q)
, 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-lpsep: a ≠ b
, 
pgeo-psep: a ≠ b
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
pgeo-LPSepOr: LPSepOr(l;p;q)
, 
projective-plane-structure: ProjectivePlaneStructure
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
subtype_rel_self, 
all_wf, 
pgeo-line_wf, 
pgeo-point_wf, 
sq_stable_wf, 
pgeo-plsep_wf, 
or_wf, 
pgeo-lsep_wf, 
pgeo-lpsep_wf, 
pgeo-psep_wf, 
exists_wf, 
pgeo-incident_wf, 
sq_exists_wf, 
projective-plane-structure_subtype, 
set_wf, 
projective-plane-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
hypothesis, 
applyEquality, 
tokenEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
lambdaEquality, 
hypothesisEquality, 
setEquality, 
functionEquality, 
productEquality, 
because_Cache, 
functionExtensionality, 
dependent_set_memberEquality
Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}l:Line.  \mforall{}p:\{p:Point|  l  \mneq{}  p\}  .  \mforall{}q:Point.
    (LPSepOr(l;p;q)  \mmember{}  q  \mneq{}  l  \mvee{}  q  \mneq{}  p)
Date html generated:
2018_05_22-PM-00_29_30
Last ObjectModification:
2017_11_02-PM-03_28_48
Theory : euclidean!plane!geometry
Home
Index