Nuprl Lemma : pgeo-plsep-cycle

g:ProjectivePlane. ∀a,b,c:Point. ∀s:a ≠ b. ∀s1:b ≠ c. ∀s2:a ≠ c.  (a ≠ b ∨  {b ≠ a ∨ c ∧ c ≠ a ∨ b})


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-join: p ∨ q pgeo-psep: a ≠ b pgeo-plsep: a ≠ b pgeo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a and: P ∧ Q prop: or: P ∨ Q false: False cand: c∧ B
Lemmas referenced :  PL-sep-or pgeo-join_wf projective-plane-structure-complete_subtype projective-plane-subtype subtype_rel_transitivity projective-plane_wf projective-plane-structure-complete_wf projective-plane-structure_wf pgeo-line_wf pgeo-incident_wf psep-join-implies-false pgeo-plsep_wf projective-plane-structure_subtype pgeo-primitives_wf pgeo-psep_wf pgeo-point_wf pgeo-lsep-or projective-plane-subtype-basic pgeo-lsep-implies-plsep_dual incident-join-first pgeo-lsep-implies-plsep incident-join-second pgeo-meet-implies-psep2 pgeo-psep-sym pgeo-lsep-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache hypothesisEquality applyEquality hypothesis instantiate isectElimination independent_isectElimination sqequalRule lambdaEquality setElimination rename setEquality productEquality independent_functionElimination unionElimination voidElimination independent_pairFormation dependent_set_memberEquality productElimination

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a,b,c:Point.  \mforall{}s:a  \mneq{}  b.  \mforall{}s1:b  \mneq{}  c.  \mforall{}s2:a  \mneq{}  c.
    (a  \mneq{}  b  \mvee{}  c  {}\mRightarrow{}  \{b  \mneq{}  a  \mvee{}  c  \mwedge{}  c  \mneq{}  a  \mvee{}  b\})



Date html generated: 2018_05_22-PM-00_50_46
Last ObjectModification: 2017_12_05-AM-11_04_43

Theory : euclidean!plane!geometry


Home Index