Nuprl Lemma : pgeo-plsep-cycle
∀g:ProjectivePlane. ∀a,b,c:Point. ∀s:a ≠ b. ∀s1:b ≠ c. ∀s2:a ≠ c.  (a ≠ b ∨ c 
⇒ {b ≠ a ∨ c ∧ c ≠ a ∨ b})
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-join: p ∨ q
, 
pgeo-psep: a ≠ b
, 
pgeo-plsep: a ≠ b
, 
pgeo-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
false: False
, 
cand: A c∧ B
Lemmas referenced : 
PL-sep-or, 
pgeo-join_wf, 
projective-plane-structure-complete_subtype, 
projective-plane-subtype, 
subtype_rel_transitivity, 
projective-plane_wf, 
projective-plane-structure-complete_wf, 
projective-plane-structure_wf, 
pgeo-line_wf, 
pgeo-incident_wf, 
psep-join-implies-false, 
pgeo-plsep_wf, 
projective-plane-structure_subtype, 
pgeo-primitives_wf, 
pgeo-psep_wf, 
pgeo-point_wf, 
pgeo-lsep-or, 
projective-plane-subtype-basic, 
pgeo-lsep-implies-plsep_dual, 
incident-join-first, 
pgeo-lsep-implies-plsep, 
incident-join-second, 
pgeo-meet-implies-psep2, 
pgeo-psep-sym, 
pgeo-lsep-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
independent_functionElimination, 
unionElimination, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
productElimination
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a,b,c:Point.  \mforall{}s:a  \mneq{}  b.  \mforall{}s1:b  \mneq{}  c.  \mforall{}s2:a  \mneq{}  c.
    (a  \mneq{}  b  \mvee{}  c  {}\mRightarrow{}  \{b  \mneq{}  a  \mvee{}  c  \mwedge{}  c  \mneq{}  a  \mvee{}  b\})
Date html generated:
2018_05_22-PM-00_50_46
Last ObjectModification:
2017_12_05-AM-11_04_43
Theory : euclidean!plane!geometry
Home
Index