Nuprl Lemma : rng-pp-primitives_wf
∀[r:Rng]. (rng-pp-primitives(r) ∈ ProjGeomPrimitives)
Proof
Definitions occuring in Statement : 
rng-pp-primitives: rng-pp-primitives(r)
, 
pgeo-primitives: ProjGeomPrimitives
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
rng: Rng
, 
rng-pp-primitives: rng-pp-primitives(r)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
rng_zero_wf, 
le_wf, 
false_wf, 
scalar-product_wf, 
zero-vector_wf, 
equal_wf, 
not_wf, 
rng_car_wf, 
int_seg_wf, 
mk-pgeo-prim_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
lambdaFormation, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
rename, 
setElimination, 
hypothesis, 
natural_numberEquality, 
functionEquality, 
setEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  (rng-pp-primitives(r)  \mmember{}  ProjGeomPrimitives)
Date html generated:
2018_05_22-PM-00_53_12
Last ObjectModification:
2018_05_21-AM-01_20_06
Theory : euclidean!plane!geometry
Home
Index