Nuprl Lemma : rng-pp-primitives_wf

[r:Rng]. (rng-pp-primitives(r) ∈ ProjGeomPrimitives)


Proof




Definitions occuring in Statement :  rng-pp-primitives: rng-pp-primitives(r) pgeo-primitives: ProjGeomPrimitives uall: [x:A]. B[x] member: t ∈ T rng: Rng
Definitions unfolded in proof :  implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: all: x:A. B[x] prop: rng: Rng rng-pp-primitives: rng-pp-primitives(r) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf rng_zero_wf le_wf false_wf scalar-product_wf zero-vector_wf equal_wf not_wf rng_car_wf int_seg_wf mk-pgeo-prim_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality independent_pairFormation dependent_set_memberEquality lambdaFormation lambdaEquality hypothesisEquality applyEquality functionExtensionality because_Cache rename setElimination hypothesis natural_numberEquality functionEquality setEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  (rng-pp-primitives(r)  \mmember{}  ProjGeomPrimitives)



Date html generated: 2018_05_22-PM-00_53_12
Last ObjectModification: 2018_05_21-AM-01_20_06

Theory : euclidean!plane!geometry


Home Index