Nuprl Lemma : ip-triangle-shift

rv:InnerProductSpace. ∀a,b,c:Point.  (a;b;c)  (∀z:Point. (z  (¬Δ(a;b;z))  Δ(z;b;c))))


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) inner-product-space: InnerProductSpace ss-sep: y ss-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] and: P ∧ Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  not-ip-triangle not_wf ip-triangle_wf ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-point_wf ip-triangle-implies-separated2 ip-triangle-linearity rv-add_wf rv-mul_wf rv-sub_wf ip-triangle_functionality ss-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination isectElimination applyEquality instantiate independent_isectElimination sqequalRule because_Cache

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  (\mforall{}z:Point.  (z  \#  b  {}\mRightarrow{}  (\mneg{}\mDelta{}(a;b;z))  {}\mRightarrow{}  \mDelta{}(z;b;c))))



Date html generated: 2017_10_04-PM-11_58_58
Last ObjectModification: 2017_03_10-PM-02_44_48

Theory : inner!product!spaces


Home Index