Nuprl Lemma : ip-triangle-shift
∀rv:InnerProductSpace. ∀a,b,c:Point.  (Δ(a;b;c) 
⇒ (∀z:Point. (z # b 
⇒ (¬Δ(a;b;z)) 
⇒ Δ(z;b;c))))
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not-ip-triangle, 
not_wf, 
ip-triangle_wf, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-point_wf, 
ip-triangle-implies-separated2, 
ip-triangle-linearity, 
rv-add_wf, 
rv-mul_wf, 
rv-sub_wf, 
ip-triangle_functionality, 
ss-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  (\mforall{}z:Point.  (z  \#  b  {}\mRightarrow{}  (\mneg{}\mDelta{}(a;b;z))  {}\mRightarrow{}  \mDelta{}(z;b;c))))
Date html generated:
2017_10_04-PM-11_58_58
Last ObjectModification:
2017_03_10-PM-02_44_48
Theory : inner!product!spaces
Home
Index