Nuprl Lemma : not-ip-triangle
∀rv:InnerProductSpace. ∀a,b,c:Point(rv).  (a # b 
⇒ c # b 
⇒ (¬Δ(a;b;c)) 
⇒ (∃t:ℝ. ((r0 < |t|) ∧ c ≡ b + t*a - b)))
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-add: x + y
, 
rless: x < y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
ip-triangle: Δ(a;b;c)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
not: ¬A
, 
prop: ℙ
, 
false: False
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
or: P ∨ Q
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
rv-sub: x - y
, 
rv-minus: -x
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not-rless, 
rabs_wf, 
rv-ip_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
rmul_wf, 
rv-norm_wf, 
ip-triangle_wf, 
istype-void, 
Error :ss-sep_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
Error :ss-point_wf, 
rv-Cauchy-Schwarz', 
rleq_antisymmetry, 
rv-Cauchy-Schwarz-equality', 
rv-ip-symmetry, 
req_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
uiff_transitivity, 
req_functionality, 
rabs_functionality, 
req_weakening, 
real_polynomial_null, 
int-to-real_wf, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rv-sep-iff, 
rless_wf, 
Error :ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
rv-sep-iff-norm, 
rless_functionality, 
rv-norm_functionality, 
rv-norm-mul, 
rmul-is-positive, 
zero-rleq-rabs, 
rless_transitivity2, 
rless_transitivity1, 
nat_plus_properties, 
full-omega-unsat, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
rv-add-cancel-left, 
Error :ss-eq_functionality, 
Error :ss-eq_weakening, 
Error :ss-eq_inversion, 
radd_wf, 
rv-minus_wf, 
rv-0_wf, 
iff_weakening_uiff, 
rv-add-assoc, 
rv-add-swap, 
rv-add_functionality, 
rv-mul-1-add, 
rv-mul_functionality, 
rv-mul0, 
rv-add-0, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionIsType, 
universeIsType, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
productElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType, 
unionElimination, 
imageElimination, 
Error :memTop, 
minusEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point(rv).
    (a  \#  b  {}\mRightarrow{}  c  \#  b  {}\mRightarrow{}  (\mneg{}\mDelta{}(a;b;c))  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((r0  <  |t|)  \mwedge{}  c  \mequiv{}  b  +  t*a  -  b)))
Date html generated:
2020_05_20-PM-01_13_31
Last ObjectModification:
2019_12_09-PM-11_41_09
Theory : inner!product!spaces
Home
Index