Nuprl Lemma : rv-Cauchy-Schwarz-equality'
∀rv:InnerProductSpace. ∀a,b:Point.  ((|a ⋅ b| = (||a|| * ||b||)) 
⇒ b # 0 
⇒ (∃t:ℝ. a ≡ t*b))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-0: 0
, 
rabs: |x|
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rv-Cauchy-Schwarz-equality, 
req_wf, 
rabs_wf, 
rv-ip_wf, 
rmul_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
uiff_transitivity, 
req_functionality, 
req_weakening, 
rmul_functionality, 
req_inversion, 
rv-norm-squared, 
rnexp-rmul, 
rnexp_functionality, 
rabs-rnexp, 
rnexp2-nonneg, 
rabs-of-nonneg
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
because_Cache, 
productElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point.    ((|a  \mcdot{}  b|  =  (||a||  *  ||b||))  {}\mRightarrow{}  b  \#  0  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  a  \mequiv{}  t*b))
Date html generated:
2017_10_04-PM-11_52_32
Last ObjectModification:
2017_03_10-PM-02_34_47
Theory : inner!product!spaces
Home
Index