Nuprl Lemma : rv-Cauchy-Schwarz-equality'

rv:InnerProductSpace. ∀a,b:Point.  ((|a ⋅ b| (||a|| ||b||))   (∃t:ℝa ≡ t*b))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x rv-0: 0 rabs: |x| req: y rmul: b real: ss-eq: x ≡ y ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q guard: {T} uimplies: supposing a nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rv-Cauchy-Schwarz-equality req_wf rabs_wf rv-ip_wf rmul_wf rv-norm_wf real_wf rleq_wf int-to-real_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rnexp_wf false_wf le_wf uiff_transitivity req_functionality req_weakening rmul_functionality req_inversion rv-norm-squared rnexp-rmul rnexp_functionality rabs-rnexp rnexp2-nonneg rabs-of-nonneg
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination applyEquality lambdaEquality setElimination rename setEquality productEquality natural_numberEquality sqequalRule instantiate independent_isectElimination dependent_set_memberEquality independent_pairFormation because_Cache productElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point.    ((|a  \mcdot{}  b|  =  (||a||  *  ||b||))  {}\mRightarrow{}  b  \#  0  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  a  \mequiv{}  t*b))



Date html generated: 2017_10_04-PM-11_52_32
Last ObjectModification: 2017_03_10-PM-02_34_47

Theory : inner!product!spaces


Home Index