Nuprl Lemma : ip-triangle-linearity
∀rv:InnerProductSpace. ∀a,b,c:Point.  (Δ(a;b;c) 
⇒ (∀t:ℝ. ((r0 < |t|) 
⇒ Δ(b + t*a - b;b;c))))
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-add: x + y
, 
rless: x < y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
ip-triangle: Δ(a;b;c)
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
rv-sub: x - y
, 
rv-minus: -x
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
rabs_wf, 
real_wf, 
ip-triangle_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-eq_wf, 
rv-sub_wf, 
rv-add_wf, 
rv-mul_wf, 
radd_wf, 
rmul_wf, 
rminus_wf, 
rv-minus_wf, 
req_weakening, 
rv-ip_wf, 
rv-norm_wf, 
rleq_wf, 
req_wf, 
uiff_transitivity, 
ss-eq_functionality, 
ss-eq_weakening, 
rv-mul-linear, 
rv-add_functionality, 
rv-add-assoc, 
rv-mul-mul, 
rv-mul-add-1-alt, 
rv-add-comm, 
rv-mul-1-add-alt, 
rv-mul_functionality, 
req_transitivity, 
radd_functionality, 
rmul_functionality, 
radd_comm, 
rmul-minus, 
rmul_over_rminus, 
rminus_functionality, 
rmul-distrib, 
rmul-one-both, 
rminus-radd, 
rmul-int, 
req_inversion, 
rminus-as-rmul, 
radd-ac, 
req_functionality, 
radd-assoc, 
radd-int, 
radd-zero-both, 
rless_functionality, 
rabs_functionality, 
rv-ip-mul, 
rabs-rmul, 
rv-norm-mul, 
rv-ip_functionality, 
rv-norm_functionality, 
rmul_preserves_rless, 
rless-implies-rless, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rsub_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
minusEquality, 
multiplyEquality, 
addEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
addLevel, 
computeAll, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  (\mforall{}t:\mBbbR{}.  ((r0  <  |t|)  {}\mRightarrow{}  \mDelta{}(b  +  t*a  -  b;b;c))))
Date html generated:
2017_10_04-PM-11_58_36
Last ObjectModification:
2017_07_28-AM-08_54_33
Theory : inner!product!spaces
Home
Index