Nuprl Lemma : ip-triangle-linearity

rv:InnerProductSpace. ∀a,b,c:Point.  (a;b;c)  (∀t:ℝ((r0 < |t|)  Δ(b t*a b;b;c))))


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) rv-sub: y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y rless: x < y rabs: |x| int-to-real: r(n) real: ss-point: Point all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ip-triangle: Δ(a;b;c) member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q rv-sub: y rv-minus: -x uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rless_wf int-to-real_wf rabs_wf real_wf ip-triangle_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-eq_wf rv-sub_wf rv-add_wf rv-mul_wf radd_wf rmul_wf rminus_wf rv-minus_wf req_weakening rv-ip_wf rv-norm_wf rleq_wf req_wf uiff_transitivity ss-eq_functionality ss-eq_weakening rv-mul-linear rv-add_functionality rv-add-assoc rv-mul-mul rv-mul-add-1-alt rv-add-comm rv-mul-1-add-alt rv-mul_functionality req_transitivity radd_functionality rmul_functionality radd_comm rmul-minus rmul_over_rminus rminus_functionality rmul-distrib rmul-one-both rminus-radd rmul-int req_inversion rminus-as-rmul radd-ac req_functionality radd-assoc radd-int radd-zero-both rless_functionality rabs_functionality rv-ip-mul rabs-rmul rv-norm-mul rv-ip_functionality rv-norm_functionality rmul_preserves_rless rless-implies-rless real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rsub_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin natural_numberEquality hypothesis hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule because_Cache minusEquality multiplyEquality addEquality lambdaEquality setElimination rename setEquality productEquality independent_functionElimination dependent_functionElimination productElimination addLevel computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  (\mforall{}t:\mBbbR{}.  ((r0  <  |t|)  {}\mRightarrow{}  \mDelta{}(b  +  t*a  -  b;b;c))))



Date html generated: 2017_10_04-PM-11_58_36
Last ObjectModification: 2017_07_28-AM-08_54_33

Theory : inner!product!spaces


Home Index