Nuprl Lemma : is-isometry_wf
∀[rv:InnerProductSpace]. ∀[f:Point ⟶ Point].  (is-isometry(rv;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
is-isometry: is-isometry(rv;f)
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-isometry: is-isometry(rv;f)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-orthogonal_wf, 
all_wf, 
ss-eq_wf, 
rv-add_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
productEquality, 
dependent_functionElimination, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f:Point  {}\mrightarrow{}  Point].    (is-isometry(rv;f)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_04-PM-11_53_56
Last ObjectModification:
2017_03_23-PM-03_53_36
Theory : inner!product!spaces
Home
Index