Nuprl Lemma : is-isometry_wf

[rv:InnerProductSpace]. ∀[f:Point ⟶ Point].  (is-isometry(rv;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  is-isometry: is-isometry(rv;f) inner-product-space: InnerProductSpace ss-point: Point uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-isometry: is-isometry(rv;f) subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] prop: and: P ∧ Q all: x:A. B[x] so_apply: x[s]
Lemmas referenced :  exists_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rv-orthogonal_wf all_wf ss-eq_wf rv-add_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination because_Cache lambdaEquality productEquality dependent_functionElimination functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f:Point  {}\mrightarrow{}  Point].    (is-isometry(rv;f)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_04-PM-11_53_56
Last ObjectModification: 2017_03_23-PM-03_53_36

Theory : inner!product!spaces


Home Index