Nuprl Lemma : mkr2_wf
∀[a,b:ℝ].  (mkr2(a;b) ∈ ℝ^2)
Proof
Definitions occuring in Statement : 
mkr2: mkr2(a;b)
, 
real-vec: ℝ^n
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mkr2: mkr2(a;b)
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
select_wf, 
real_wf, 
cons_wf, 
nil_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
hypothesisEquality, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b:\mBbbR{}].    (mkr2(a;b)  \mmember{}  \mBbbR{}\^{}2)
Date html generated:
2017_10_05-AM-00_12_49
Last ObjectModification:
2017_04_10-PM-10_02_40
Theory : inner!product!spaces
Home
Index