Nuprl Lemma : mkr2_wf

[a,b:ℝ].  (mkr2(a;b) ∈ ℝ^2)


Proof




Definitions occuring in Statement :  mkr2: mkr2(a;b) real-vec: ^n real: uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  real-vec: ^n uall: [x:A]. B[x] member: t ∈ T mkr2: mkr2(a;b) int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  select_wf real_wf cons_wf nil_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length_of_cons_lemma length_of_nil_lemma decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache hypothesisEquality setElimination rename independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b:\mBbbR{}].    (mkr2(a;b)  \mmember{}  \mBbbR{}\^{}2)



Date html generated: 2017_10_05-AM-00_12_49
Last ObjectModification: 2017_04_10-PM-10_02_40

Theory : inner!product!spaces


Home Index