Nuprl Lemma : not-ip-triangle-iff
∀rv:InnerProductSpace. ∀a,b,c:Point.  (¬Δ(a;b;c) 
⇐⇒ ¬((¬a_b_c) ∧ (¬b_c_a) ∧ (¬c_a_b)))
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
ip-between: a_b_c
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
cand: A c∧ B
Lemmas referenced : 
not_wf, 
ip-between_wf, 
ip-triangle_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
not-ip-triangle-implies, 
ip-triangle-not-between, 
ip-triangle-permute
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
dependent_functionElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mneg{}\mDelta{}(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}((\mneg{}a\_b\_c)  \mwedge{}  (\mneg{}b\_c\_a)  \mwedge{}  (\mneg{}c\_a\_b)))
Date html generated:
2017_10_05-AM-00_00_49
Last ObjectModification:
2017_03_11-AM-01_26_46
Theory : inner!product!spaces
Home
Index