Nuprl Lemma : ip-triangle-not-between
∀[rv:InnerProductSpace]. ∀[a,b,c:Point].  ¬a_b_c supposing Δ(a;b;c)
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
ip-between: a_b_c
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
ip-between: a_b_c
, 
ip-triangle: Δ(a;b;c)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
rv-sub_wf, 
inner-product-space_subtype, 
req_wf, 
radd_wf, 
rmul_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
rv-ip_wf, 
rless_wf, 
rabs_wf, 
equal_wf, 
ip-between_wf, 
ip-triangle_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
radd-preserves-req, 
rminus_wf, 
uiff_transitivity, 
req_functionality, 
req_transitivity, 
radd_functionality, 
req_weakening, 
rminus-as-rmul, 
radd-assoc, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
radd_comm, 
radd-zero-both, 
iff_transitivity, 
rless_functionality, 
rabs_functionality, 
squash_wf, 
true_wf, 
rabs-rminus, 
iff_weakening_equal, 
rmul-nonneg-case1, 
rv-norm-nonneg, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
rabs-of-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
isect_memberEquality, 
instantiate, 
independent_isectElimination, 
productElimination, 
minusEquality, 
addEquality, 
independent_pairFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c:Point].    \mneg{}a\_b\_c  supposing  \mDelta{}(a;b;c)
Date html generated:
2017_10_04-PM-11_59_02
Last ObjectModification:
2017_03_10-PM-04_41_06
Theory : inner!product!spaces
Home
Index