Nuprl Lemma : not-ip-triangle-implies

rv:InnerProductSpace. ∀a,b,c:Point.  ((¬Δ(a;b;c))  ((¬a_b_c) ∧ b_c_a) ∧ c_a_b))))


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) ip-between: a_b_c inner-product-space: InnerProductSpace ss-point: Point all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a or: P ∨ Q exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y less_than: a < b squash: T less_than': less_than'(a;b) true: True ml-term-to-poly: ml-term-to-poly(t) nil: [] it: has-value: (a)↓ req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) rge: x ≥ y rgt: x > y cand: c∧ B rsub: y rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) rv-sub: y rv-minus: -x itermConstant: "const" rooint: (l, u) i-member: r ∈ I ss-eq: x ≡ y
Lemmas referenced :  not_wf ip-between_wf ip-triangle_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf false_wf or_wf ss-sep_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle not-ip-triangle ip-between-iff exists_wf real_wf i-member_wf rooint_wf int-to-real_wf ss-eq_wf rv-add_wf rv-mul_wf rsub_wf ss-sep-symmetry rabs-positive-iff radd-preserves-rless radd_wf itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf rless-int rless_functionality real_polynomial_null evalall-sqequal real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma req-iff-rsub-is-0 rless_functionality_wrt_implies rleq_weakening_equal rleq_weakening_rless rdiv_wf rminus_wf rless_wf radd-ac radd-rminus-both rmul-one-both rmul-distrib2 rmul-identity1 req_inversion rminus-as-rmul radd-int rmul_functionality radd_comm rmul-rdiv-cancel2 rmul_over_rminus rmul-distrib req_transitivity rmul-zero-both rminus_functionality rminus-zero radd_functionality req_weakening radd-zero-both rmul_wf rmul_preserves_rless member_rooint_lemma rv-sub_wf ss-eq_functionality ss-eq_weakening rv-add_functionality rv-mul_functionality rmul_preserves_req equal_wf rinv_wf2 itermMultiply_wf itermMinus_wf req_functionality real_term_value_mul_lemma real_term_value_minus_lemma rmul-rinv req_wf squash_wf true_wf iff_weakening_equal radd-preserves-req rv-minus_wf rv-0_wf uiff_transitivity rv-mul-linear rv-add-assoc rv-mul-mul rv-add-swap rv-mul-add-alt rv-mul-add ss-eq_transitivity rinv-as-rdiv rminus-rdiv rv-mul0 rv-add-0 rsub_functionality rv-mul1 trivial-rsub-rless real_term_polynomial rless-implies-rless radd-assoc rminus-rminus rmul-int rminus-radd rmul-minus rv-mul-1-add-alt rv-add-comm rv-0-add rleq_antisymmetry not-rless ss-sep_functionality ip-between_functionality ip-between-trivial2 ip-between-trivial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination productEquality introduction extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule because_Cache functionEquality unionElimination dependent_functionElimination productElimination addLevel impliesFunctionality independent_pairFormation lambdaEquality natural_numberEquality andLevelFunctionality impliesLevelFunctionality imageMemberEquality baseClosed computeAll sqleReflexivity mlComputation int_eqEquality intEquality isect_memberEquality voidEquality dependent_pairFormation inrFormation levelHypothesis addEquality minusEquality equalityTransitivity equalitySymmetry imageElimination universeEquality multiplyEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    ((\mneg{}\mDelta{}(a;b;c))  {}\mRightarrow{}  (\mneg{}((\mneg{}a\_b\_c)  \mwedge{}  (\mneg{}b\_c\_a)  \mwedge{}  (\mneg{}c\_a\_b))))



Date html generated: 2017_10_05-AM-00_00_45
Last ObjectModification: 2017_07_28-AM-08_54_44

Theory : inner!product!spaces


Home Index