Nuprl Lemma : ip-between-trivial

[rv:InnerProductSpace]. ∀[a,b:Point].  b_b_a


Proof




Definitions occuring in Statement :  ip-between: a_b_c inner-product-space: InnerProductSpace ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ip-between: a_b_c subtype_rel: A ⊆B implies:  Q guard: {T} uimplies: supposing a all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) prop:
Lemmas referenced :  req_witness radd_wf rmul_wf rv-norm_wf rv-sub_wf inner-product-space_subtype rv-ip_wf int-to-real_wf ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_wf rv-0_wf uiff_transitivity req_functionality radd_functionality rv-ip_functionality rv-sub-same ss-eq_weakening rmul_functionality rv-norm_functionality req_weakening rv-0ip rv-norm0 real_wf rleq_wf rmul-zero-both radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality applyEquality hypothesis because_Cache natural_numberEquality independent_functionElimination instantiate independent_isectElimination isect_memberEquality dependent_functionElimination productElimination lambdaEquality setElimination rename setEquality productEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point].    b\_b\_a



Date html generated: 2017_10_04-PM-11_59_44
Last ObjectModification: 2017_03_09-PM-05_43_31

Theory : inner!product!spaces


Home Index