Nuprl Lemma : rv-0ip

[rv:InnerProductSpace]. ∀[x:Point(rv)].  (0 ⋅ r0)


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 req: y int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q guard: {T} uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rv-ip_wf rv-0_wf inner-product-space_subtype int-to-real_wf Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rv-ip0 req_functionality rv-ip-symmetry req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule natural_numberEquality independent_functionElimination universeIsType instantiate independent_isectElimination isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType productElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point(rv)].    (0  \mcdot{}  x  =  r0)



Date html generated: 2020_05_20-PM-01_11_04
Last ObjectModification: 2019_12_09-PM-11_53_19

Theory : inner!product!spaces


Home Index