Nuprl Lemma : rv-sub-same

[rv:RealVectorSpace]. ∀[x:Point].  x ≡ 0


Proof




Definitions occuring in Statement :  rv-sub: y rv-0: 0 real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rv-sub: y rv-minus: -x all: x:A. B[x] rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 rv-sub_wf rv-0_wf ss-point_wf real-vector-space_wf ss-eq_wf rv-mul_wf int-to-real_wf radd_wf rv-add_wf itermSubtract_wf itermAdd_wf itermConstant_wf req-iff-rsub-is-0 uiff_transitivity ss-eq_functionality rv-mul-1-add ss-eq_weakening rv-mul_functionality rv-mul0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis isect_memberEquality voidElimination natural_numberEquality minusEquality productElimination independent_isectElimination independent_functionElimination approximateComputation intEquality voidEquality

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x:Point].    x  -  x  \mequiv{}  0



Date html generated: 2017_10_04-PM-11_51_15
Last ObjectModification: 2017_07_28-AM-08_53_54

Theory : inner!product!spaces


Home Index