Nuprl Lemma : ip-triangle-permute

rv:InnerProductSpace. ∀a,b,c:Point(rv).  (a;b;c)  Δ(c;a;b))


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) inner-product-space: InnerProductSpace all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ip-triangle: Δ(a;b;c) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a rv-sub: y rv-minus: -x uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top iff: ⇐⇒ Q rev_implies:  Q nat: true: True absval: |i| squash: T false: False not: ¬A
Lemmas referenced :  ip-triangle-permute-lemma rv-sub_wf inner-product-space_subtype ip-triangle_wf Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  Error :ss-eq_wf,  rv-add_wf rv-mul_wf int-to-real_wf radd_wf rmul_wf rv-minus_wf itermSubtract_wf itermMultiply_wf itermConstant_wf itermAdd_wf rv-0_wf rabs_wf rv-ip_wf rv-norm_wf uiff_transitivity Error :ss-eq_functionality,  rv-add_functionality Error :ss-eq_weakening,  rv-mul-linear rv-add-assoc rv-mul-mul Error :ss-eq_transitivity,  rv-add-swap rv-add-comm rv-mul-add-alt rv-mul_functionality req_transitivity radd_functionality req_weakening rv-mul0 rv-0-add req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_const_lemma real_term_value_add_lemma rless_functionality rabs_functionality rv-ip_functionality rmul_functionality rv-norm_functionality rv-norm-difference-symmetry rmul_comm rv-mul1 req_functionality req_wf absval_wf uiff_transitivity2 rv-ip-mul2 rabs-rmul squash_wf true_wf real_wf rabs-int rv-ip-symmetry itermVar_wf real_term_value_var_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality isectElimination applyEquality hypothesis sqequalRule because_Cache independent_functionElimination universeIsType inhabitedIsType instantiate independent_isectElimination minusEquality natural_numberEquality lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry productElimination approximateComputation isect_memberEquality_alt voidElimination equalityIstype imageElimination imageMemberEquality baseClosed int_eqEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point(rv).    (\mDelta{}(a;b;c)  {}\mRightarrow{}  \mDelta{}(c;a;b))



Date html generated: 2020_05_20-PM-01_13_25
Last ObjectModification: 2019_12_10-AM-00_41_54

Theory : inner!product!spaces


Home Index