Nuprl Lemma : ip-triangle-permute
∀rv:InnerProductSpace. ∀a,b,c:Point(rv).  (Δ(a;b;c) 
⇒ Δ(c;a;b))
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
inner-product-space: InnerProductSpace
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
ip-triangle: Δ(a;b;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
rv-sub: x - y
, 
rv-minus: -x
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
true: True
, 
absval: |i|
, 
squash: ↓T
, 
false: False
, 
not: ¬A
Lemmas referenced : 
ip-triangle-permute-lemma, 
rv-sub_wf, 
inner-product-space_subtype, 
ip-triangle_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
Error :ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
int-to-real_wf, 
radd_wf, 
rmul_wf, 
rv-minus_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermAdd_wf, 
rv-0_wf, 
rabs_wf, 
rv-ip_wf, 
rv-norm_wf, 
uiff_transitivity, 
Error :ss-eq_functionality, 
rv-add_functionality, 
Error :ss-eq_weakening, 
rv-mul-linear, 
rv-add-assoc, 
rv-mul-mul, 
Error :ss-eq_transitivity, 
rv-add-swap, 
rv-add-comm, 
rv-mul-add-alt, 
rv-mul_functionality, 
req_transitivity, 
radd_functionality, 
req_weakening, 
rv-mul0, 
rv-0-add, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
rless_functionality, 
rabs_functionality, 
rv-ip_functionality, 
rmul_functionality, 
rv-norm_functionality, 
rv-norm-difference-symmetry, 
rmul_comm, 
rv-mul1, 
req_functionality, 
req_wf, 
absval_wf, 
uiff_transitivity2, 
rv-ip-mul2, 
rabs-rmul, 
squash_wf, 
true_wf, 
real_wf, 
rabs-int, 
rv-ip-symmetry, 
itermVar_wf, 
real_term_value_var_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
independent_functionElimination, 
universeIsType, 
inhabitedIsType, 
instantiate, 
independent_isectElimination, 
minusEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
approximateComputation, 
isect_memberEquality_alt, 
voidElimination, 
equalityIstype, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
int_eqEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point(rv).    (\mDelta{}(a;b;c)  {}\mRightarrow{}  \mDelta{}(c;a;b))
Date html generated:
2020_05_20-PM-01_13_25
Last ObjectModification:
2019_12_10-AM-00_41_54
Theory : inner!product!spaces
Home
Index