Nuprl Lemma : ip-triangle-permute-lemma

rv:InnerProductSpace. ∀x,y:Point(rv).  ((|x ⋅ y| < (||x|| ||y||))  (|x ⋅ x| < (||x|| ||y x||)))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y rv-ip: x ⋅ y inner-product-space: InnerProductSpace rless: x < y rabs: |x| rmul: b all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q nat_plus: + rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False guard: {T} nat: le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  square-rless-implies rabs_wf rv-ip_wf rv-sub_wf inner-product-space_subtype rmul_wf rv-norm_wf rmul-nonneg-case1 rv-norm-nonneg rnexp-rless zero-rleq-rabs nat_plus_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than rless_wf Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rnexp_wf istype-void istype-le rnexp2-nonneg rless_functionality req_inversion rabs-rnexp req_transitivity rnexp-rmul rmul_functionality rv-norm-squared rabs-of-nonneg req_weakening rnexp2 rsub_wf radd_wf int-to-real_wf rv-ip-sub2 rv-ip-sub-squared rv-ip-symmetry radd_functionality rsub_functionality radd-preserves-rless itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality hypothesis sqequalRule lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry because_Cache independent_functionElimination independent_isectElimination independent_pairFormation dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt Error :memTop,  universeIsType voidElimination instantiate productElimination int_eqEquality isect_memberEquality_alt

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x,y:Point(rv).
    ((|x  \mcdot{}  y|  <  (||x||  *  ||y||))  {}\mRightarrow{}  (|x  \mcdot{}  y  -  x|  <  (||x||  *  ||y  -  x||)))



Date html generated: 2020_05_20-PM-01_13_19
Last ObjectModification: 2019_12_10-AM-00_46_40

Theory : inner!product!spaces


Home Index