Nuprl Lemma : ip-triangle-permute-lemma
∀rv:InnerProductSpace. ∀x,y:Point(rv).  ((|x ⋅ y| < (||x|| * ||y||)) 
⇒ (|x ⋅ y - x| < (||x|| * ||y - x||)))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-sub: x - y
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rless: x < y
, 
rabs: |x|
, 
rmul: a * b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
false: False
, 
guard: {T}
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
Lemmas referenced : 
square-rless-implies, 
rabs_wf, 
rv-ip_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
rmul_wf, 
rv-norm_wf, 
rmul-nonneg-case1, 
rv-norm-nonneg, 
rnexp-rless, 
zero-rleq-rabs, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
rless_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rnexp_wf, 
istype-void, 
istype-le, 
rnexp2-nonneg, 
rless_functionality, 
req_inversion, 
rabs-rnexp, 
req_transitivity, 
rnexp-rmul, 
rmul_functionality, 
rv-norm-squared, 
rabs-of-nonneg, 
req_weakening, 
rnexp2, 
rsub_wf, 
radd_wf, 
int-to-real_wf, 
rv-ip-sub2, 
rv-ip-sub-squared, 
rv-ip-symmetry, 
radd_functionality, 
rsub_functionality, 
radd-preserves-rless, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
Error :memTop, 
universeIsType, 
voidElimination, 
instantiate, 
productElimination, 
int_eqEquality, 
isect_memberEquality_alt
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x,y:Point(rv).
    ((|x  \mcdot{}  y|  <  (||x||  *  ||y||))  {}\mRightarrow{}  (|x  \mcdot{}  y  -  x|  <  (||x||  *  ||y  -  x||)))
Date html generated:
2020_05_20-PM-01_13_19
Last ObjectModification:
2019_12_10-AM-00_46_40
Theory : inner!product!spaces
Home
Index