Nuprl Lemma : rv-sep-witness_wf
∀rv:InnerProductSpace. ∀x:Point. ∀y:{y:Point| x # y} .  (rv-sep-witness(rv;x;y) ∈ x # y)
Proof
Definitions occuring in Statement : 
rv-sep-witness: rv-sep-witness(rv;x;y)
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
rv-sep-witness: rv-sep-witness(rv;x;y)
, 
record-select: r.x
, 
sq_stable__rv-sep-ext, 
squash: ↓T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
sq_stable_wf, 
all_wf, 
sq_stable__rv-sep-ext, 
ss-sep_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
set_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
cumulativity, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
hypothesis, 
sqequalHypSubstitution, 
rename, 
thin, 
setElimination, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.  \mforall{}y:\{y:Point|  x  \#  y\}  .    (rv-sep-witness(rv;x;y)  \mmember{}  x  \#  y)
Date html generated:
2016_11_08-AM-09_16_42
Last ObjectModification:
2016_11_03-AM-10_58_46
Theory : inner!product!spaces
Home
Index