Nuprl Lemma : trans-apply-add

rv:InnerProductSpace. ∀T:ℝ ⟶ Point ⟶ Point. ∀t,s:ℝ.
  ∀x:Point. T_t s(x) ≡ T_t(T_s(x)) supposing ∃e:Point. translation-group-fun(rv;e;T)


Proof




Definitions occuring in Statement :  trans-apply: T_t(x) translation-group-fun: translation-group-fun(rv;e;T) inner-product-space: InnerProductSpace radd: b real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T exists: x:A. B[x] translation-group-fun: translation-group-fun(rv;e;T) and: P ∧ Q trans-apply: T_t(x) uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} ss-eq: x ≡ y not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-sep_wf trans-apply_wf real_wf radd_wf exists_wf translation-group-fun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination lambdaEquality dependent_functionElimination voidElimination functionExtensionality because_Cache functionEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.  \mforall{}t,s:\mBbbR{}.
    \mforall{}x:Point.  T\_t  +  s(x)  \mequiv{}  T\_t(T\_s(x))  supposing  \mexists{}e:Point.  translation-group-fun(rv;e;T)



Date html generated: 2017_10_05-AM-00_21_39
Last ObjectModification: 2017_06_26-AM-10_08_12

Theory : inner!product!spaces


Home Index