Nuprl Lemma : translation-group-fun_wf

rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.  (translation-group-fun(rv;e;T) ∈ ℙ)


Proof




Definitions occuring in Statement :  translation-group-fun: translation-group-fun(rv;e;T) inner-product-space: InnerProductSpace real: ss-point: Point prop: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T translation-group-fun: translation-group-fun(rv;e;T) prop: and: P ∧ Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a implies:  Q so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  all_wf real_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-sep_wf ss-eq_wf radd_wf exists!_wf rv-add_wf rv-mul_wf rleq_wf int-to-real_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality applyEquality instantiate independent_isectElimination because_Cache functionEquality functionExtensionality setEquality natural_numberEquality setElimination rename

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.    (translation-group-fun(rv;e;T)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_21_07
Last ObjectModification: 2017_06_23-PM-09_42_43

Theory : inner!product!spaces


Home Index