Nuprl Lemma : translation-group-fun_wf
∀rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.  (translation-group-fun(rv;e;T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
translation-group-fun: translation-group-fun(rv;e;T)
, 
inner-product-space: InnerProductSpace
, 
real: ℝ
, 
ss-point: Point
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
prop: ℙ
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
real_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-sep_wf, 
ss-eq_wf, 
radd_wf, 
exists!_wf, 
rv-add_wf, 
rv-mul_wf, 
rleq_wf, 
int-to-real_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
productEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
functionEquality, 
functionExtensionality, 
setEquality, 
natural_numberEquality, 
setElimination, 
rename
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.    (translation-group-fun(rv;e;T)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-00_21_07
Last ObjectModification:
2017_06_23-PM-09_42_43
Theory : inner!product!spaces
Home
Index