Nuprl Lemma : bs_l_tree_wf
∀[L,T:Type]. ∀[t:l_tree(L;T)]. ∀[f:T ⟶ ℤ].  (bs_l_tree(t;f) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bs_l_tree: bs_l_tree(t;f), 
l_tree: l_tree(L;T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bs_l_tree: bs_l_tree(t;f), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
prop: ℙ, 
bfalse: ff, 
so_apply: x[s1;s2;s3;s4;s5]
Lemmas referenced : 
l_tree_ind_wf_simple, 
top_wf, 
bool_wf, 
l_tree_covariant, 
btrue_wf, 
eqtt_to_assert, 
max_l_tree_wf, 
unit_wf2, 
lt_int_wf, 
equal_wf, 
min_l_tree_wf, 
l_tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_functionElimination, 
unionEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
intEquality, 
universeEquality
Latex:
\mforall{}[L,T:Type].  \mforall{}[t:l\_tree(L;T)].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].    (bs\_l\_tree(t;f)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_31-AM-06_25_47
Last ObjectModification:
2018_08_21-PM-02_01_16
Theory : labeled!trees
Home
Index