Nuprl Lemma : assert-is-dml-1
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-DeMorgan-lattice(T;eq))].
uiff(↑is-dml-1(T;eq;x);x = 1 ∈ Point(free-DeMorgan-lattice(T;eq)))
Proof
Definitions occuring in Statement :
is-dml-1: is-dml-1(T;eq;x)
,
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
,
lattice-1: 1
,
lattice-point: Point(l)
,
deq: EqDecider(T)
,
assert: ↑b
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s]
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
implies: P
⇒ Q
,
is-dml-1: is-dml-1(T;eq;x)
,
all: ∀x:A. B[x]
,
deq: EqDecider(T)
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
assert_wf,
is-dml-1_wf,
equal_wf,
lattice-point_wf,
free-DeMorgan-lattice_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
lattice-meet_wf,
lattice-join_wf,
lattice-1_wf,
bdd-distributive-lattice_wf,
deq_wf,
assert_witness,
free-dml-deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
instantiate,
lambdaEquality,
productEquality,
universeEquality,
because_Cache,
independent_isectElimination,
setElimination,
rename,
isect_memberFormation,
productElimination,
independent_pairEquality,
isect_memberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
lambdaFormation,
dependent_functionElimination,
independent_pairFormation,
functionExtensionality
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[x:Point(free-DeMorgan-lattice(T;eq))].
uiff(\muparrow{}is-dml-1(T;eq;x);x = 1)
Date html generated:
2017_10_05-AM-00_41_31
Last ObjectModification:
2017_07_28-AM-09_16_38
Theory : lattices
Home
Index