Nuprl Lemma : dlattice-order_transitivity
∀[X:Type]. ∀as,bs,cs:X List List. (as
⇒ bs
⇒ bs
⇒ cs
⇒ as
⇒ cs)
Proof
Definitions occuring in Statement :
dlattice-order: as
⇒ bs
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
dlattice-order: as
⇒ bs
,
l_all: (∀x∈L.P[x])
,
l_exists: (∃x∈L. P[x])
,
exists: ∃x:A. B[x]
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
guard: {T}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
less_than: a < b
,
squash: ↓T
Lemmas referenced :
dlattice-order_wf,
list_wf,
int_seg_wf,
length_wf,
l_contains_wf,
select_wf,
int_seg_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
l_contains_transitivity
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
hypothesis,
universeEquality,
dependent_functionElimination,
productElimination,
rename,
natural_numberEquality,
dependent_pairFormation,
because_Cache,
setElimination,
independent_isectElimination,
unionElimination,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
imageElimination,
independent_functionElimination
Latex:
\mforall{}[X:Type]. \mforall{}as,bs,cs:X List List. (as {}\mRightarrow{} bs {}\mRightarrow{} bs {}\mRightarrow{} cs {}\mRightarrow{} as {}\mRightarrow{} cs)
Date html generated:
2017_02_21-AM-09_53_01
Last ObjectModification:
2017_01_21-PM-03_59_35
Theory : lattices
Home
Index