Nuprl Lemma : all-vs-quotient-of-free

K:CRng. ∀V:VectorSpace(K).
  ∃S:Type. ∃P:Point(free-vs(K;S)) ⟶ ℙ(vs-subspace(K;free-vs(K;S);x.P[x]) ∧ V ≅ free-vs(K;S)//a.P[a])


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vs-quotient: vs//z.P[z] vs-iso: A ≅ B vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] universe: Type crng: CRng
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: implies:  Q rng: Rng crng: CRng uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] all: x:A. B[x] vs-map: A ⟶ B exists!: !x:T. P[x] surject: Surj(A;B;f)
Lemmas referenced :  crng_wf vector-space_wf vs-quotient_wf vs-iso_wf vs-subspace_wf exists_wf free-vs_wf implies-iso-vs-quotient vs-point_wf surject_wf free-vs-property equal_wf free-vs-inc_wf
Rules used in proof :  independent_isectElimination functionExtensionality productEquality sqequalRule universeEquality lambdaEquality applyEquality cumulativity functionEquality instantiate independent_functionElimination dependent_functionElimination hypothesisEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut dependent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination

Latex:
\mforall{}K:CRng.  \mforall{}V:VectorSpace(K).
    \mexists{}S:Type
      \mexists{}P:Point(free-vs(K;S))  {}\mrightarrow{}  \mBbbP{}.  (vs-subspace(K;free-vs(K;S);x.P[x])  \mwedge{}  V  \mcong{}  free-vs(K;S)//a.P[a])



Date html generated: 2018_05_22-PM-09_46_52
Last ObjectModification: 2018_01_09-PM-05_27_33

Theory : linear!algebra


Home Index