Nuprl Lemma : all-vs-quotient-of-free
∀K:CRng. ∀V:VectorSpace(K).
  ∃S:Type. ∃P:Point(free-vs(K;S)) ⟶ ℙ. (vs-subspace(K;free-vs(K;S);x.P[x]) ∧ V ≅ free-vs(K;S)//a.P[a])
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S)
, 
vs-quotient: vs//z.P[z]
, 
vs-iso: A ≅ B
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uimplies: b supposing a
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
rng: Rng
, 
crng: CRng
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
vs-map: A ⟶ B
, 
exists!: ∃!x:T. P[x]
, 
surject: Surj(A;B;f)
Lemmas referenced : 
crng_wf, 
vector-space_wf, 
vs-quotient_wf, 
vs-iso_wf, 
vs-subspace_wf, 
exists_wf, 
free-vs_wf, 
implies-iso-vs-quotient, 
vs-point_wf, 
surject_wf, 
free-vs-property, 
equal_wf, 
free-vs-inc_wf
Rules used in proof : 
independent_isectElimination, 
functionExtensionality, 
productEquality, 
sqequalRule, 
universeEquality, 
lambdaEquality, 
applyEquality, 
cumulativity, 
functionEquality, 
instantiate, 
independent_functionElimination, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
dependent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination
Latex:
\mforall{}K:CRng.  \mforall{}V:VectorSpace(K).
    \mexists{}S:Type
      \mexists{}P:Point(free-vs(K;S))  {}\mrightarrow{}  \mBbbP{}.  (vs-subspace(K;free-vs(K;S);x.P[x])  \mwedge{}  V  \mcong{}  free-vs(K;S)//a.P[a])
Date html generated:
2018_05_22-PM-09_46_52
Last ObjectModification:
2018_01_09-PM-05_27_33
Theory : linear!algebra
Home
Index