Nuprl Lemma : implies-iso-vs-quotient

[K:CRng]. ∀[A:VectorSpace(K)].
  ∀B:VectorSpace(K)
    ((∃f:A ⟶ B. Surj(Point(A);Point(B);f))  (∃P:Point(A) ⟶ ℙ(vs-subspace(K;A;z.P[z]) ∧ B ≅ A//z.P[z])))


Proof




Definitions occuring in Statement :  vs-quotient: vs//z.P[z] vs-iso: A ≅ B vs-map: A ⟶ B vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) surject: Surj(A;B;f) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T crng: CRng rng: Rng vs-map: A ⟶ B and: P ∧ Q cand: c∧ B so_apply: x[s] surject: Surj(A;B;f) vs-iso: A ≅ B so_lambda: λ2x.t[x] uimplies: supposing a subtype_rel: A ⊆B prop: pi1: fst(t) vs-map-kernel: a ∈ Ker(f) vs-quotient: vs//z.P[z] vs-add: y vs-point: Point(vs) vs-mul: x mk-vs: mk-vs eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] eq-mod-subspace: mod (z.P[z]) vs-neg: -(x) vs-subtract: (x y) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q quotient: x,y:A//B[x; y]
Lemmas referenced :  vs-map-kernel_wf vs-point_wf vs-map-kernel-is-subspace vs-map-quotient-kernel vs-quotient_wf subtype-vs-quotient vs-map_wf vs-subspace_wf vs-iso_wf surject_wf vector-space_wf crng_wf eq-mod-subspace-equiv rec_select_update_lemma quotient-member-eq eq-mod-subspace_wf vs-add_wf equal_wf squash_wf true_wf istype-universe vs-map-subtract vs-0_wf iff_weakening_equal equal-iff-vs-subtract-is-0 vs-mul_wf rng_car_wf subtype_rel_self rng_sig_wf quotient_wf vs-subtract_wf vs-subtract-self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt lambdaEquality_alt cut introduction extract_by_obid isectElimination setElimination rename because_Cache hypothesis hypothesisEquality universeIsType sqequalRule independent_pairFormation promote_hyp independent_isectElimination productIsType functionIsType equalityIstype applyEquality inhabitedIsType equalityTransitivity equalitySymmetry dependent_functionElimination functionExtensionality independent_functionElimination dependent_set_memberEquality_alt Error :memTop,  imageElimination instantiate natural_numberEquality imageMemberEquality baseClosed universeEquality pointwiseFunctionalityForEquality pertypeElimination sqequalBase

Latex:
\mforall{}[K:CRng].  \mforall{}[A:VectorSpace(K)].
    \mforall{}B:VectorSpace(K)
        ((\mexists{}f:A  {}\mrightarrow{}  B.  Surj(Point(A);Point(B);f))
        {}\mRightarrow{}  (\mexists{}P:Point(A)  {}\mrightarrow{}  \mBbbP{}.  (vs-subspace(K;A;z.P[z])  \mwedge{}  B  \mcong{}  A//z.P[z])))



Date html generated: 2020_05_20-PM-01_18_18
Last ObjectModification: 2020_01_03-AM-00_42_14

Theory : linear!algebra


Home Index