Nuprl Lemma : implies-iso-vs-quotient
∀[K:CRng]. ∀[A:VectorSpace(K)].
  ∀B:VectorSpace(K)
    ((∃f:A ⟶ B. Surj(Point(A);Point(B);f)) 
⇒ (∃P:Point(A) ⟶ ℙ. (vs-subspace(K;A;z.P[z]) ∧ B ≅ A//z.P[z])))
Proof
Definitions occuring in Statement : 
vs-quotient: vs//z.P[z]
, 
vs-iso: A ≅ B
, 
vs-map: A ⟶ B
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
surject: Surj(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
vs-map: A ⟶ B
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
surject: Surj(A;B;f)
, 
vs-iso: A ≅ B
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
pi1: fst(t)
, 
vs-map-kernel: a ∈ Ker(f)
, 
vs-quotient: vs//z.P[z]
, 
vs-add: x + y
, 
vs-point: Point(vs)
, 
vs-mul: a * x
, 
mk-vs: mk-vs, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
eq-mod-subspace: x = y mod (z.P[z])
, 
vs-neg: -(x)
, 
vs-subtract: (x - y)
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
quotient: x,y:A//B[x; y]
Lemmas referenced : 
vs-map-kernel_wf, 
vs-point_wf, 
vs-map-kernel-is-subspace, 
vs-map-quotient-kernel, 
vs-quotient_wf, 
subtype-vs-quotient, 
vs-map_wf, 
vs-subspace_wf, 
vs-iso_wf, 
surject_wf, 
vector-space_wf, 
crng_wf, 
eq-mod-subspace-equiv, 
rec_select_update_lemma, 
quotient-member-eq, 
eq-mod-subspace_wf, 
vs-add_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
vs-map-subtract, 
vs-0_wf, 
iff_weakening_equal, 
equal-iff-vs-subtract-is-0, 
vs-mul_wf, 
rng_car_wf, 
subtype_rel_self, 
rng_sig_wf, 
quotient_wf, 
vs-subtract_wf, 
vs-subtract-self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
universeIsType, 
sqequalRule, 
independent_pairFormation, 
promote_hyp, 
independent_isectElimination, 
productIsType, 
functionIsType, 
equalityIstype, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
functionExtensionality, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
Error :memTop, 
imageElimination, 
instantiate, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
sqequalBase
Latex:
\mforall{}[K:CRng].  \mforall{}[A:VectorSpace(K)].
    \mforall{}B:VectorSpace(K)
        ((\mexists{}f:A  {}\mrightarrow{}  B.  Surj(Point(A);Point(B);f))
        {}\mRightarrow{}  (\mexists{}P:Point(A)  {}\mrightarrow{}  \mBbbP{}.  (vs-subspace(K;A;z.P[z])  \mwedge{}  B  \mcong{}  A//z.P[z])))
Date html generated:
2020_05_20-PM-01_18_18
Last ObjectModification:
2020_01_03-AM-00_42_14
Theory : linear!algebra
Home
Index