Nuprl Lemma : free-1-iso_wf
∀[S:Type]. ∀[s:S]. ∀[K:CRng].  free-1-iso(s;K) ∈ free-vs(K;S) ≅ one-dim-vs(K) supposing ∀x,y:S.  (x = y ∈ S)
Proof
Definitions occuring in Statement : 
free-1-iso: free-1-iso(s;K)
, 
free-vs: free-vs(K;S)
, 
vs-iso: A ≅ B
, 
one-dim-vs: one-dim-vs(K)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
free-1-iso: free-1-iso(s;K)
, 
free-vs-dim-1-ext, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
Lemmas referenced : 
free-vs-dim-1-ext, 
subtype_rel_self, 
crng_wf, 
equal_wf, 
vs-iso_wf, 
free-vs_wf, 
one-dim-vs_wf, 
subtype_rel_function, 
uimplies_subtype, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
universeEquality, 
cumulativity, 
hypothesisEquality, 
isectEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
inhabitedIsType, 
equalityIstype, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[S:Type].  \mforall{}[s:S].  \mforall{}[K:CRng].
    free-1-iso(s;K)  \mmember{}  free-vs(K;S)  \mcong{}  one-dim-vs(K)  supposing  \mforall{}x,y:S.    (x  =  y)
Date html generated:
2019_10_31-AM-06_30_57
Last ObjectModification:
2019_08_02-PM-04_39_22
Theory : linear!algebra
Home
Index