Nuprl Lemma : free-vs-maps-eq

[S:Type]. ∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[f,g:free-vs(K;S) ⟶ vs].
  g ∈ free-vs(K;S) ⟶ vs supposing ∀s:S. ((f <s>(g <s>) ∈ Point(vs))


Proof




Definitions occuring in Statement :  free-vs-inc: <s> free-vs: free-vs(K;S) vs-map: A ⟶ B vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a crng: CRng rng: Rng vs-map: A ⟶ B exists!: !x:T. P[x] exists: x:A. B[x] and: P ∧ Q implies:  Q squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  free-vs-property vs-point_wf free-vs-inc_wf vs-map_wf free-vs_wf istype-universe equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule functionIsType universeIsType equalityIstype setElimination rename applyEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType because_Cache instantiate universeEquality lambdaEquality_alt productElimination independent_functionElimination lambdaFormation_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f,g:free-vs(K;S)  {}\mrightarrow{}  vs].
    f  =  g  supposing  \mforall{}s:S.  ((f  <s>)  =  (g  <s>))



Date html generated: 2019_10_31-AM-06_29_47
Last ObjectModification: 2019_08_01-AM-10_59_41

Theory : linear!algebra


Home Index