Nuprl Lemma : free-vs-maps-eq
∀[S:Type]. ∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[f,g:free-vs(K;S) ⟶ vs].
  f = g ∈ free-vs(K;S) ⟶ vs supposing ∀s:S. ((f <s>) = (g <s>) ∈ Point(vs))
Proof
Definitions occuring in Statement : 
free-vs-inc: <s>
, 
free-vs: free-vs(K;S)
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
crng: CRng
, 
rng: Rng
, 
vs-map: A ⟶ B
, 
exists!: ∃!x:T. P[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
free-vs-property, 
vs-point_wf, 
free-vs-inc_wf, 
vs-map_wf, 
free-vs_wf, 
istype-universe, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
functionIsType, 
universeIsType, 
equalityIstype, 
setElimination, 
rename, 
applyEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
instantiate, 
universeEquality, 
lambdaEquality_alt, 
productElimination, 
independent_functionElimination, 
lambdaFormation_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f,g:free-vs(K;S)  {}\mrightarrow{}  vs].
    f  =  g  supposing  \mforall{}s:S.  ((f  <s>)  =  (g  <s>))
Date html generated:
2019_10_31-AM-06_29_47
Last ObjectModification:
2019_08_01-AM-10_59_41
Theory : linear!algebra
Home
Index