Nuprl Lemma : vs-lift-neg-bfs
∀[K:CRng]. ∀[S:Type]. ∀[fs:basic-formal-sum(K;S)]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].
  (vs-lift(vs;f;-(fs)) = -K 1 * vs-lift(vs;f;fs) ∈ Point(vs))
Proof
Definitions occuring in Statement : 
neg-bfs: -(fs)
, 
vs-lift: vs-lift(vs;f;fs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
vs-mul: a * x
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
, 
rng_minus: -r
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
crng: CRng
, 
all: ∀x:A. B[x]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
neg-bfs: -(fs)
, 
vs-lift: vs-lift(vs;f;fs)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
crng_wf, 
basic-formal-sum_wf, 
vector-space_wf, 
iff_weakening_equal, 
rng_one_wf, 
vs-bag-add-mul, 
rng_minus_wf, 
vs-mul_wf, 
vs-bag-add_wf, 
vs-point_wf, 
true_wf, 
squash_wf, 
equal_wf, 
rng_car_wf, 
bag-subtype-list, 
bag-summation-map, 
vs-mul-mul, 
rng_wf, 
bag_wf, 
rng_times_over_minus, 
rng_times_one
Rules used in proof : 
axiomEquality, 
functionEquality, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
independent_pairEquality, 
spreadEquality, 
functionExtensionality, 
productElimination, 
because_Cache, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
cumulativity, 
hypothesis, 
rename, 
setElimination, 
productEquality, 
dependent_functionElimination, 
applyEquality, 
hypothesisEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:CRng].  \mforall{}[S:Type].  \mforall{}[fs:basic-formal-sum(K;S)].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].
    (vs-lift(vs;f;-(fs))  =  -K  1  *  vs-lift(vs;f;fs))
Date html generated:
2018_05_22-PM-09_47_23
Last ObjectModification:
2018_01_09-PM-01_27_06
Theory : linear!algebra
Home
Index