Nuprl Lemma : vs-lift-neg-bfs

[K:CRng]. ∀[S:Type]. ∀[fs:basic-formal-sum(K;S)]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].
  (vs-lift(vs;f;-(fs)) -K vs-lift(vs;f;fs) ∈ Point(vs))


Proof




Definitions occuring in Statement :  neg-bfs: -(fs) vs-lift: vs-lift(vs;f;fs) basic-formal-sum: basic-formal-sum(K;S) vs-mul: x vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng rng_one: 1 rng_minus: -r
Definitions unfolded in proof :  implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a true: True prop: squash: T so_apply: x[s] so_lambda: λ2x.t[x] rng: Rng crng: CRng all: x:A. B[x] basic-formal-sum: basic-formal-sum(K;S) subtype_rel: A ⊆B top: Top vs-bag-add: Σ{f[b] b ∈ bs} neg-bfs: -(fs) vs-lift: vs-lift(vs;f;fs) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  crng_wf basic-formal-sum_wf vector-space_wf iff_weakening_equal rng_one_wf vs-bag-add-mul rng_minus_wf vs-mul_wf vs-bag-add_wf vs-point_wf true_wf squash_wf equal_wf rng_car_wf bag-subtype-list bag-summation-map vs-mul-mul rng_wf bag_wf rng_times_over_minus rng_times_one
Rules used in proof :  axiomEquality functionEquality independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality independent_pairEquality spreadEquality functionExtensionality productElimination because_Cache universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality cumulativity hypothesis rename setElimination productEquality dependent_functionElimination applyEquality hypothesisEquality voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:CRng].  \mforall{}[S:Type].  \mforall{}[fs:basic-formal-sum(K;S)].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].
    (vs-lift(vs;f;-(fs))  =  -K  1  *  vs-lift(vs;f;fs))



Date html generated: 2018_05_22-PM-09_47_23
Last ObjectModification: 2018_01_09-PM-01_27_06

Theory : linear!algebra


Home Index