Nuprl Lemma : vs-lin-indep_wf
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  (vs-lin-indep(K;vs;v.P[v]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
vs-lin-indep: vs-lin-indep(K;vs;v.P[v])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vs-lin-indep: vs-lin-indep(K;vs;v.P[v])
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
rng: Rng
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
vs-point_wf, 
subtype_rel_self, 
inject_wf, 
rng_car_wf, 
equal_wf, 
sum-in-vs_wf, 
vs-mul_wf, 
vs-0_wf, 
rng_zero_wf, 
vector-space_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
setEquality, 
because_Cache, 
applyEquality, 
instantiate, 
universeEquality, 
functionExtensionality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
axiomEquality, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
dependent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].    (vs-lin-indep(K;vs;v.P[v])  \mmember{}  \mBbbP{})
Date html generated:
2019_10_31-AM-06_26_37
Last ObjectModification:
2019_08_14-PM-06_35_20
Theory : linear!algebra
Home
Index