Nuprl Lemma : presheaf-apply_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠB}]. ∀[u:{X ⊢ _:A}].
  (presheaf-apply(w;u) ∈ {X ⊢ _:(B)[u]})


Proof




Definitions occuring in Statement :  presheaf-apply: presheaf-apply(w;u) presheaf-pi: ΠB pscm-id-adjoin: [u] psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-apply: presheaf-apply(w;u) subtype_rel: A ⊆B
Lemmas referenced :  presheaf-app_wf ps_context_cumulativity2 presheaf-type-cumulativity2 psc-adjoin_wf presheaf-term_wf presheaf-pi_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].
\mforall{}[u:\{X  \mvdash{}  \_:A\}].
    (presheaf-apply(w;u)  \mmember{}  \{X  \mvdash{}  \_:(B)[u]\})



Date html generated: 2020_05_20-PM-01_31_13
Last ObjectModification: 2020_04_02-PM-03_02_38

Theory : presheaf!models!of!type!theory


Home Index