Nuprl Lemma : psc-m2_wf
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].  (q2 ∈ {X.A.B ⊢ _:((A)p)p})
Proof
Definitions occuring in Statement : 
psc-m2: q2
, 
psc-fst: p
, 
psc-adjoin: X.A
, 
presheaf-term: {X ⊢ _:A}
, 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
psc-m2: q2
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
psc-snd_wf, 
pscm-ap-type_wf, 
ps_context_cumulativity2, 
psc-adjoin_wf, 
presheaf-type-cumulativity2, 
psc-fst_wf, 
pscm-ap-term_wf, 
presheaf-term_wf, 
presheaf-type_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
universeIsType, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].
    (q2  \mmember{}  \{X.A.B  \mvdash{}  \_:((A)p)p\})
Date html generated:
2020_05_20-PM-01_27_39
Last ObjectModification:
2020_04_02-PM-01_36_12
Theory : presheaf!models!of!type!theory
Home
Index