Nuprl Lemma : psc-m2_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].  (q2 ∈ {X.A.B ⊢ _:((A)p)p})


Proof




Definitions occuring in Statement :  psc-m2: q2 psc-fst: p psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] psc-m2: q2 member: t ∈ T all: x:A. B[x] implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  psc-snd_wf pscm-ap-type_wf ps_context_cumulativity2 psc-adjoin_wf presheaf-type-cumulativity2 psc-fst_wf pscm-ap-term_wf presheaf-term_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry inhabitedIsType lambdaFormation_alt instantiate applyEquality because_Cache sqequalRule universeIsType equalityIstype dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].
    (q2  \mmember{}  \{X.A.B  \mvdash{}  \_:((A)p)p\})



Date html generated: 2020_05_20-PM-01_27_39
Last ObjectModification: 2020_04_02-PM-01_36_12

Theory : presheaf!models!of!type!theory


Home Index