Nuprl Lemma : psc-m4_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[E:{X.A.B ⊢ _}]. ∀[D:{X.A.B.E ⊢ _}].
  (q4 ∈ {X.A.B.E.D ⊢ _:((((A)p)p)p)p})


Proof




Definitions occuring in Statement :  psc-m4: q4 psc-fst: p psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T psc-m4: q4 subtype_rel: A ⊆B
Lemmas referenced :  pscm-ap-term_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-ap-type_wf psc-fst_wf psc-m3_wf presheaf-type_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality because_Cache applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[E:\{X.A.B  \mvdash{}  \_\}].
\mforall{}[D:\{X.A.B.E  \mvdash{}  \_\}].
    (q4  \mmember{}  \{X.A.B.E.D  \mvdash{}  \_:((((A)p)p)p)p\})



Date html generated: 2020_05_20-PM-01_27_45
Last ObjectModification: 2020_04_02-PM-01_42_14

Theory : presheaf!models!of!type!theory


Home Index