Nuprl Lemma : pscm-ap-term-p

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A,T:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:A}].  ((t)p ∈ {Gamma.T ⊢ _:(A)p})


Proof




Definitions occuring in Statement :  psc-fst: p psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  pscm-ap-term_wf psc-adjoin_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 psc-fst_wf presheaf-term_wf presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A,T:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].
    ((t)p  \mmember{}  \{Gamma.T  \mvdash{}  \_:(A)p\})



Date html generated: 2020_05_20-PM-01_27_48
Last ObjectModification: 2020_04_02-PM-01_55_35

Theory : presheaf!models!of!type!theory


Home Index