Nuprl Lemma : pscm-subset-domain

[C:SmallCategory]. ∀[X,Y,Z:ps_context{j:l}(C)].
  psc_map{j:l}(C; Y; X) ⊆psc_map{j:l}(C; Z; X) supposing sub_ps_context{j:l}(C; Z; Y)


Proof




Definitions occuring in Statement :  sub_ps_context: Y ⊆ X psc_map: A ⟶ B ps_context: __⊢ uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T sub_ps_context: Y ⊆ X psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) all: x:A. B[x] ps_context: __⊢ type-cat: TypeCat cat-arrow: cat-arrow(C) pi2: snd(t) pi1: fst(t) cat-ob: cat-ob(C) pscm-id: 1(X) pscm-comp: F compose: g squash: T guard: {T}
Lemmas referenced :  pscm-comp_wf cat-ob_wf op-cat_wf cat-arrow_wf type-cat_wf functor-ob_wf cat-comp_wf small-category-cumulativity-2 functor-arrow_wf psc_map_wf sub_ps_context_wf ps_context_wf small-category_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry dependent_set_memberEquality_alt sqequalRule functionIsType universeIsType because_Cache applyEquality equalityIstype instantiate functionExtensionality universeEquality setElimination rename inhabitedIsType functionEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination lambdaFormation_alt dependent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y,Z:ps\_context\{j:l\}(C)].
    psc\_map\{j:l\}(C;  Y;  X)  \msubseteq{}r  psc\_map\{j:l\}(C;  Z;  X)  supposing  sub\_ps\_context\{j:l\}(C;  Z;  Y)



Date html generated: 2020_05_20-PM-01_35_19
Last ObjectModification: 2020_04_02-PM-06_35_14

Theory : presheaf!models!of!type!theory


Home Index