Nuprl Lemma : pscm-swap_wf

[C:SmallCategory]. ∀[G:ps_context{j:l}(C)]. ∀[A,B:{G ⊢ _}].
  (pscm-swap(G;A;B) ∈ psc_map{[i j]:l}(C; G.A.(B)p; G.B.(A)p))


Proof




Definitions occuring in Statement :  pscm-swap: pscm-swap(G;A;B) psc-fst: p psc-adjoin: X.A pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pscm-swap: pscm-swap(G;A;B) subtype_rel: A ⊆B presheaf-type: {X ⊢ _} psc-fst: p pscm-ap-type: (AF)s pscm+: tau+ pscm-ap: (s)x psc-snd: q pscm-comp: F pscm-adjoin: (s;u) pi1: fst(t) compose: g
Lemmas referenced :  pscm-adjoin_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-ap-type_wf psc-fst_wf pscm+_wf pscm-ap-term_wf psc-snd_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality applyEquality hypothesis setElimination rename productElimination equalityTransitivity equalitySymmetry axiomEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[G:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].
    (pscm-swap(G;A;B)  \mmember{}  psc\_map\{[i  |  j]:l\}(C;  G.A.(B)p;  G.B.(A)p))



Date html generated: 2020_05_20-PM-01_28_37
Last ObjectModification: 2020_04_03-AM-11_09_12

Theory : presheaf!models!of!type!theory


Home Index