Nuprl Lemma : pscm-swap_wf
∀[C:SmallCategory]. ∀[G:ps_context{j:l}(C)]. ∀[A,B:{G ⊢ _}].
  (pscm-swap(G;A;B) ∈ psc_map{[i | j]:l}(C; G.A.(B)p; G.B.(A)p))
Proof
Definitions occuring in Statement : 
pscm-swap: pscm-swap(G;A;B)
, 
psc-fst: p
, 
psc-adjoin: X.A
, 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
psc_map: A ⟶ B
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pscm-swap: pscm-swap(G;A;B)
, 
subtype_rel: A ⊆r B
, 
presheaf-type: {X ⊢ _}
, 
psc-fst: p
, 
pscm-ap-type: (AF)s
, 
pscm+: tau+
, 
pscm-ap: (s)x
, 
psc-snd: q
, 
pscm-comp: G o F
, 
pscm-adjoin: (s;u)
, 
pi1: fst(t)
, 
compose: f o g
Lemmas referenced : 
pscm-adjoin_wf, 
psc-adjoin_wf, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
pscm-ap-type_wf, 
psc-fst_wf, 
pscm+_wf, 
pscm-ap-term_wf, 
psc-snd_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[G:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].
    (pscm-swap(G;A;B)  \mmember{}  psc\_map\{[i  |  j]:l\}(C;  G.A.(B)p;  G.B.(A)p))
Date html generated:
2020_05_20-PM-01_28_37
Last ObjectModification:
2020_04_03-AM-11_09_12
Theory : presheaf!models!of!type!theory
Home
Index