Nuprl Lemma : int-rmul_functionality

[k1,k2:ℤ]. ∀[a,b:ℝ].  (k1 k2 b) supposing ((k1 k2 ∈ ℤand (a b))


Proof




Definitions occuring in Statement :  int-rmul: k1 a req: y real: uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) implies:  Q prop: subtype_rel: A ⊆B true: True squash: T
Lemmas referenced :  req_functionality int-rmul_wf rmul_wf int-to-real_wf int-rmul-req req_witness equal-wf-base int_subtype_base req_wf real_wf req_weakening rmul_functionality squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination productElimination independent_functionElimination intEquality applyEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry natural_numberEquality lambdaEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[k1,k2:\mBbbZ{}].  \mforall{}[a,b:\mBbbR{}].    (k1  *  a  =  k2  *  b)  supposing  ((k1  =  k2)  and  (a  =  b))



Date html generated: 2016_10_26-AM-09_05_25
Last ObjectModification: 2016_08_26-PM-01_59_45

Theory : reals


Home Index