Nuprl Lemma : int-rmul_functionality
∀[k1,k2:ℤ]. ∀[a,b:ℝ].  (k1 * a = k2 * b) supposing ((k1 = k2 ∈ ℤ) and (a = b))
Proof
Definitions occuring in Statement : 
int-rmul: k1 * a
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
req_functionality, 
int-rmul_wf, 
rmul_wf, 
int-to-real_wf, 
int-rmul-req, 
req_witness, 
equal-wf-base, 
int_subtype_base, 
req_wf, 
real_wf, 
req_weakening, 
rmul_functionality, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
intEquality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[k1,k2:\mBbbZ{}].  \mforall{}[a,b:\mBbbR{}].    (k1  *  a  =  k2  *  b)  supposing  ((k1  =  k2)  and  (a  =  b))
Date html generated:
2016_10_26-AM-09_05_25
Last ObjectModification:
2016_08_26-PM-01_59_45
Theory : reals
Home
Index