Nuprl Lemma : lower-right-endpoint_wf
∀[a,b:ℝ]. ∀[n:ℕ+]. (lower-right-endpoint(a;b;n) ∈ ℝ)
Proof
Definitions occuring in Statement :
lower-right-endpoint: lower-right-endpoint(a;b;n)
,
real: ℝ
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
lower-right-endpoint: lower-right-endpoint(a;b;n)
,
int_nzero: ℤ-o
,
nat_plus: ℕ+
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
Lemmas referenced :
real_wf,
nat_plus_wf,
int-rmul_wf,
radd_wf,
nequal_wf,
equal_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermConstant_wf,
itermVar_wf,
itermAdd_wf,
intformeq_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_plus_properties,
int-rdiv_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
dependent_set_memberEquality,
addEquality,
setElimination,
rename,
hypothesisEquality,
natural_numberEquality,
hypothesis,
lambdaFormation,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache
Latex:
\mforall{}[a,b:\mBbbR{}]. \mforall{}[n:\mBbbN{}\msupplus{}]. (lower-right-endpoint(a;b;n) \mmember{} \mBbbR{})
Date html generated:
2016_05_18-AM-08_38_06
Last ObjectModification:
2016_01_17-AM-02_23_02
Theory : reals
Home
Index