Nuprl Lemma : not-rv-pos-angle-iff
∀[n:ℕ]. ∀[a,b,c:ℝ^n].  uiff(¬rv-pos-angle(n;a;b;c);¬(a ≠ b ∧ b ≠ c ∧ c ≠ a ∧ (¬a-b-c) ∧ (¬b-c-a) ∧ (¬c-a-b)))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
not-rv-pos-angle-implies, 
real-vec-sep_wf, 
not_wf, 
rv-between_wf, 
rv-pos-angle_wf, 
real-vec_wf, 
nat_wf, 
rv-pos-angle-permute, 
rv-pos-angle-implies-separated, 
real-vec-sep-symmetry, 
rv-pos-angle-not-between
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
voidElimination, 
productEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].
    uiff(\mneg{}rv-pos-angle(n;a;b;c);\mneg{}(a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  c  \mneq{}  a  \mwedge{}  (\mneg{}a-b-c)  \mwedge{}  (\mneg{}b-c-a)  \mwedge{}  (\mneg{}c-a-b)))
Date html generated:
2017_10_03-AM-11_08_43
Last ObjectModification:
2017_03_07-PM-00_11_38
Theory : reals
Home
Index