Nuprl Lemma : not-rv-pos-angle-iff

[n:ℕ]. ∀[a,b,c:ℝ^n].  uiff(¬rv-pos-angle(n;a;b;c);¬(a ≠ b ∧ b ≠ c ∧ c ≠ a ∧ a-b-c) ∧ b-c-a) ∧ c-a-b)))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n nat: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False all: x:A. B[x] prop: cand: c∧ B iff: ⇐⇒ Q
Lemmas referenced :  not-rv-pos-angle-implies real-vec-sep_wf not_wf rv-between_wf rv-pos-angle_wf real-vec_wf nat_wf rv-pos-angle-permute rv-pos-angle-implies-separated real-vec-sep-symmetry rv-pos-angle-not-between
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis voidElimination productEquality sqequalRule lambdaEquality because_Cache productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].
    uiff(\mneg{}rv-pos-angle(n;a;b;c);\mneg{}(a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  c  \mneq{}  a  \mwedge{}  (\mneg{}a-b-c)  \mwedge{}  (\mneg{}b-c-a)  \mwedge{}  (\mneg{}c-a-b)))



Date html generated: 2017_10_03-AM-11_08_43
Last ObjectModification: 2017_03_07-PM-00_11_38

Theory : reals


Home Index