Nuprl Lemma : rv-pos-angle-implies-separated

n:ℕ. ∀a,b,c:ℝ^n.  (rv-pos-angle(n;a;b;c)  a ≠ c)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q real-vec-sep: a ≠ b rv-pos-angle: rv-pos-angle(n;a;b;c) member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q real-vec-dist: d(x;y) nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat_plus: + less_than: a < b squash: T true: True cand: c∧ B itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top guard: {T}
Lemmas referenced :  rv-pos-angle_wf real-vec_wf nat_wf real-vec-dist_wf real_wf rleq_wf int-to-real_wf real-vec-sub_wf req_weakening rless_wf rabs_wf dot-product_wf rmul_wf real-vec-norm_wf equal_wf req_functionality real-vec-dist-translation rless_functionality square-rless-implies real-vec-dist-nonneg rnexp_wf false_wf le_wf radd_wf less_than_wf real-vec-norm-diff-squared rnexp0 rnexp-rless zero-rleq-rabs rnexp2-nonneg req_inversion rabs-rnexp rnexp-rmul rabs-of-nonneg rsub_wf radd-preserves-rleq rleq_functionality real_term_polynomial itermSubtract_wf itermAdd_wf itermMultiply_wf itermConstant_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul_preserves_rless rless-int rnexp2 rless_transitivity1 radd-preserves-rless radd-non-neg rmul_functionality rless-implies-rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality sqequalRule because_Cache independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination dependent_set_memberEquality independent_pairFormation minusEquality imageMemberEquality baseClosed productEquality computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-pos-angle(n;a;b;c)  {}\mRightarrow{}  a  \mneq{}  c)



Date html generated: 2017_10_03-AM-11_04_30
Last ObjectModification: 2017_07_28-AM-08_22_30

Theory : reals


Home Index