Nuprl Lemma : not-rv-pos-angle-implies
∀[n:ℕ]. ∀a,b,c:ℝ^n.  ((¬rv-pos-angle(n;a;b;c)) ⇒ (¬(a ≠ b ∧ b ≠ c ∧ c ≠ a ∧ (¬a-b-c) ∧ (¬b-c-a) ∧ (¬c-a-b))))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c, 
real-vec-sep: a ≠ b, 
rv-pos-angle: rv-pos-angle(n;a;b;c), 
real-vec: ℝ^n, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
real-vec-sep: a ≠ b, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
rev_implies: P ⇐ Q, 
rneq: x ≠ y, 
or: P ∨ Q, 
rv-between: a-b-c, 
rsub: x - y, 
uimplies: b supposing a, 
guard: {T}, 
rgt: x > y, 
rge: x ≥ y, 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
cand: A c∧ B, 
real-vec-between: a-b-c, 
top: Top, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
nat: ℕ, 
real-vec-add: X + Y, 
real-vec-mul: a*X, 
real-vec-sub: X - Y, 
req-vec: req-vec(n;x;y), 
subtype_rel: A ⊆r B, 
real-vec: ℝ^n, 
i-member: r ∈ I, 
rooint: (l, u), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
real-vec-sep_wf, 
not_wf, 
rv-between_wf, 
rv-pos-angle_wf, 
real-vec_wf, 
nat_wf, 
not-rv-pos-angle, 
real-vec-sep-symmetry, 
rabs-positive-iff, 
radd-assoc, 
req_inversion, 
radd_comm, 
radd-ac, 
req_weakening, 
radd-rminus-both, 
radd_functionality, 
req_transitivity, 
radd-rminus-assoc, 
rless_functionality, 
rless_wf, 
rminus_wf, 
radd_wf, 
rsub_wf, 
int-to-real_wf, 
radd-preserves-rless, 
rleq_weakening_rless, 
rleq_weakening_equal, 
rless_functionality_wrt_implies, 
rless-int, 
real-vec-mul_wf, 
real-vec-add_wf, 
req-vec_wf, 
rooint_wf, 
i-member_wf, 
rdiv_wf, 
rmul-one-both, 
rmul-distrib2, 
rmul-identity1, 
rminus-as-rmul, 
radd-int, 
rmul_functionality, 
rmul-rdiv-cancel2, 
rmul_over_rminus, 
rmul-distrib, 
rmul-zero-both, 
rminus_functionality, 
rminus-zero, 
radd-zero-both, 
rmul_wf, 
rmul_preserves_rless, 
member_rooint_lemma, 
real-vec-mul_functionality, 
real-vec-add_functionality, 
req-vec_weakening, 
req-vec_functionality, 
real-vec-sub_wf, 
int_seg_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
rminus-rminus, 
req_functionality, 
uiff_transitivity, 
req_wf, 
equal_wf, 
rmul_preserves_req, 
real_wf, 
rmul-ac, 
rmul_comm, 
rmul-assoc, 
false_wf, 
or_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rless-implies-rless, 
real_term_polynomial, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
trivial-rsub-rless, 
rminus-radd, 
rmul-rdiv-cancel, 
rleq_antisymmetry, 
not-rless, 
real-vec-sep_functionality, 
not-real-vec-sep-refl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
productElimination, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
productEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairFormation, 
unionElimination, 
levelHypothesis, 
independent_isectElimination, 
addLevel, 
natural_numberEquality, 
baseClosed, 
imageMemberEquality, 
inrFormation, 
dependent_pairFormation, 
addEquality, 
minusEquality, 
voidEquality, 
isect_memberEquality, 
rename, 
setElimination, 
universeEquality, 
imageElimination, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
computeAll, 
int_eqEquality, 
intEquality
Latex:
\mforall{}[n:\mBbbN{}]
    \mforall{}a,b,c:\mBbbR{}\^{}n.
        ((\mneg{}rv-pos-angle(n;a;b;c))  {}\mRightarrow{}  (\mneg{}(a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  c  \mneq{}  a  \mwedge{}  (\mneg{}a-b-c)  \mwedge{}  (\mneg{}b-c-a)  \mwedge{}  (\mneg{}c-a-b))))
 Date html generated: 
2017_10_03-AM-11_08_23
 Last ObjectModification: 
2017_07_28-AM-08_22_49
Theory : reals
Home
Index