Nuprl Lemma : rv-pos-angle-not-between

[n:ℕ]. ∀[a,b,c:ℝ^n].  ¬a-b-c supposing rv-pos-angle(n;a;b;c)


Proof




Definitions occuring in Statement :  rv-between: a-b-c rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False rv-pos-angle: rv-pos-angle(n;a;b;c) rv-between: a-b-c and: P ∧ Q real-vec-between: a-b-c exists: x:A. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q req-vec: req-vec(n;x;y) real-vec-sub: Y real-vec-mul: a*X real-vec-add: Y nat: real-vec: ^n rsub: y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) le: A ≤ B less_than': less_than'(a;b) rless: x < y sq_exists: x:{A| B[x]} nat_plus: + ge: i ≥  less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  rv-between_wf rv-pos-angle_wf real-vec_wf nat_wf rabs_wf dot-product_wf real-vec-sub_wf real-vec-add_wf real-vec-mul_wf rsub_wf int-to-real_wf rmul_wf real-vec-norm_wf rless_functionality rabs_functionality dot-product_functionality real-vec-sub_functionality req-vec_weakening rmul_functionality real-vec-norm_functionality int_seg_wf req_wf radd_wf rminus_wf req_weakening uiff_transitivity req_functionality radd_functionality rminus_functionality req_transitivity rmul-distrib rmul_over_rminus rmul-one-both rmul_comm rminus-radd radd_comm rminus-as-rmul req_inversion radd-assoc radd-ac rmul-identity1 rmul-distrib2 radd-int rmul-zero-both rminus-rminus radd-zero-both equal_wf rnexp_wf false_wf le_wf rless_wf not_wf dot-product-linearity2 real-vec-norm-mul rabs-rmul real-vec-norm-squared real_wf rnexp2-nonneg rabs-of-nonneg rnexp2 nat_plus_properties nat_properties satisfiable-full-omega-tt intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf rmul-ac rmul-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution productElimination extract_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination because_Cache isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality independent_isectElimination setElimination rename applyEquality minusEquality addEquality dependent_set_memberEquality independent_pairFormation addLevel impliesFunctionality imageElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll levelHypothesis impliesLevelFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    \mneg{}a-b-c  supposing  rv-pos-angle(n;a;b;c)



Date html generated: 2017_10_03-AM-11_05_37
Last ObjectModification: 2017_03_02-PM-02_43_12

Theory : reals


Home Index