Nuprl Lemma : rv-pos-angle-not-between
∀[n:ℕ]. ∀[a,b,c:ℝ^n].  ¬a-b-c supposing rv-pos-angle(n;a;b;c)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
rv-between: a-b-c
, 
and: P ∧ Q
, 
real-vec-between: a-b-c
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
req-vec: req-vec(n;x;y)
, 
real-vec-sub: X - Y
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
nat: ℕ
, 
real-vec: ℝ^n
, 
rsub: x - y
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
rv-between_wf, 
rv-pos-angle_wf, 
real-vec_wf, 
nat_wf, 
rabs_wf, 
dot-product_wf, 
real-vec-sub_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
int-to-real_wf, 
rmul_wf, 
real-vec-norm_wf, 
rless_functionality, 
rabs_functionality, 
dot-product_functionality, 
real-vec-sub_functionality, 
req-vec_weakening, 
rmul_functionality, 
real-vec-norm_functionality, 
int_seg_wf, 
req_wf, 
radd_wf, 
rminus_wf, 
req_weakening, 
uiff_transitivity, 
req_functionality, 
radd_functionality, 
rminus_functionality, 
req_transitivity, 
rmul-distrib, 
rmul_over_rminus, 
rmul-one-both, 
rmul_comm, 
rminus-radd, 
radd_comm, 
rminus-as-rmul, 
req_inversion, 
radd-assoc, 
radd-ac, 
rmul-identity1, 
rmul-distrib2, 
radd-int, 
rmul-zero-both, 
rminus-rminus, 
radd-zero-both, 
equal_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rless_wf, 
not_wf, 
dot-product-linearity2, 
real-vec-norm-mul, 
rabs-rmul, 
real-vec-norm-squared, 
real_wf, 
rnexp2-nonneg, 
rabs-of-nonneg, 
rnexp2, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
rmul-ac, 
rmul-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
productElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_isectElimination, 
setElimination, 
rename, 
applyEquality, 
minusEquality, 
addEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
levelHypothesis, 
impliesLevelFunctionality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    \mneg{}a-b-c  supposing  rv-pos-angle(n;a;b;c)
Date html generated:
2017_10_03-AM-11_05_37
Last ObjectModification:
2017_03_02-PM-02_43_12
Theory : reals
Home
Index