Nuprl Lemma : pointwise-rleq_wf
∀[n,m:ℤ]. ∀[x,y:{n..m + 1-} ⟶ ℝ].  (x[k] ≤ y[k] for k ∈ [n,m] ∈ ℙ)
Proof
Definitions occuring in Statement : 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
real_wf, 
int_seg_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
rleq_wf, 
le_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (x[k]  \mleq{}  y[k]  for  k  \mmember{}  [n,m]  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-07_44_39
Last ObjectModification:
2016_01_17-AM-02_06_16
Theory : reals
Home
Index