Nuprl Lemma : prod-metric-meq
∀[k:ℕ]. ∀[X:ℕk ⟶ Type]. ∀[d:i:ℕk ⟶ metric(X[i])]. ∀[p,q:i:ℕk ⟶ X[i]].  uiff(p ≡ q;∀i:ℕk. p i ≡ q i)
Proof
Definitions occuring in Statement : 
prod-metric: prod-metric(k;d)
, 
meq: x ≡ y
, 
metric: metric(X)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
meq: x ≡ y
, 
subtype_rel: A ⊆r B
, 
metric: metric(X)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
prod-metric: prod-metric(k;d)
, 
mdist: mdist(d;x;y)
, 
squash: ↓T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
Lemmas referenced : 
sq_stable__uiff, 
meq_wf, 
int_seg_wf, 
prod-metric_wf, 
sq_stable__meq, 
sq_stable__all, 
req_witness, 
int-to-real_wf, 
metric_wf, 
istype-universe, 
istype-nat, 
rsum-of-nonneg-zero-iff, 
subtract_wf, 
subtract-add-cancel, 
mdist_wf, 
mdist-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
universeIsType, 
independent_functionElimination, 
lambdaFormation_alt, 
dependent_functionElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
functionIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionIsType, 
instantiate, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}k  {}\mrightarrow{}  Type].  \mforall{}[d:i:\mBbbN{}k  {}\mrightarrow{}  metric(X[i])].  \mforall{}[p,q:i:\mBbbN{}k  {}\mrightarrow{}  X[i]].
    uiff(p  \mequiv{}  q;\mforall{}i:\mBbbN{}k.  p  i  \mequiv{}  q  i)
Date html generated:
2019_10_29-AM-11_09_54
Last ObjectModification:
2019_10_10-PM-10_07_38
Theory : reals
Home
Index