Nuprl Lemma : r-triangle-inequality-rsub
∀[x,y:ℝ].  (|x - y| ≤ (|x| + |y|))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
radd: a + b, 
real: ℝ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
all: ∀x:A. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ, 
prop: ℙ, 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
rge: x ≥ y, 
guard: {T}, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
top: Top, 
uiff: uiff(P;Q), 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
r-triangle-inequality2, 
int-to-real_wf, 
less_than'_wf, 
rsub_wf, 
radd_wf, 
rabs_wf, 
real_wf, 
nat_plus_wf, 
rminus_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_functionality, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
radd_functionality, 
rabs_functionality, 
itermConstant_wf, 
itermMinus_wf, 
real_term_value_minus_lemma, 
rleq_wf, 
squash_wf, 
true_wf, 
rabs-rminus, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
independent_isectElimination, 
computeAll, 
int_eqEquality, 
intEquality, 
voidEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    (|x  -  y|  \mleq{}  (|x|  +  |y|))
Date html generated:
2017_10_03-AM-08_29_37
Last ObjectModification:
2017_07_28-AM-07_26_02
Theory : reals
Home
Index