Nuprl Lemma : radd-rneq0

x,y:ℝ.  (x y ≠ r0 ⇐⇒ x ≠ -(y))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rminus: -(x) radd: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q rneq: x ≠ y or: P ∨ Q uimplies: supposing a uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rneq_wf radd_wf int-to-real_wf rminus_wf real_wf radd-preserves-rless rless_wf itermSubtract_wf itermAdd_wf itermVar_wf itermMinus_wf itermConstant_wf rless_functionality req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality inhabitedIsType unionElimination inlFormation_alt dependent_functionElimination productElimination independent_functionElimination inrFormation_alt because_Cache independent_isectElimination sqequalRule approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}x,y:\mBbbR{}.    (x  +  y  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  -(y))



Date html generated: 2019_10_29-AM-09_57_53
Last ObjectModification: 2019_04_01-PM-05_33_11

Theory : reals


Home Index